Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Med Virol ; 93(11): 6116-6123, 2021 11.
Article in English | MEDLINE | ID: covidwho-1349155

ABSTRACT

Virus invasion activates the host's innate immune response, inducing the production of numerous cytokines and interferons to eliminate pathogens. Except for viral DNA/RNA, viral proteins are also targets of pattern recognition receptors. Membrane-bound receptors such as Toll-like receptor (TLR)1, TLR2, TLR4, TLR6, and TLR10 relate to the recognition of viral proteins. Distinct TLRs perform both protective and detrimental roles for a specific virus. Here, we review viral proteins serving as pathogen-associated molecular patterns and their corresponding TLRs. These viruses are all enveloped, including respiratory syncytial virus, hepatitis C virus, measles virus, herpesvirus human immunodeficiency virus, and coronavirus, and can encode proteins to activate innate immunity in a TLR-dependent way. The TLR-viral protein relationship plays an important role in innate immunity activation. A detailed understanding of their pathways contributes to a novel direction for vaccine development.


Subject(s)
Immunity, Innate , Pathogen-Associated Molecular Pattern Molecules/metabolism , Toll-Like Receptors/immunology , Toll-Like Receptors/metabolism , Viral Proteins/metabolism , Virus Diseases/immunology , Viruses/immunology , Animals , HIV/immunology , HIV/metabolism , HIV/pathogenicity , Hepacivirus/immunology , Hepacivirus/metabolism , Hepacivirus/pathogenicity , Herpesviridae/immunology , Herpesviridae/metabolism , Herpesviridae/pathogenicity , Humans , Measles virus/immunology , Measles virus/metabolism , Measles virus/pathogenicity , Pathogen-Associated Molecular Pattern Molecules/chemistry , Respiratory Syncytial Viruses/immunology , Respiratory Syncytial Viruses/metabolism , Respiratory Syncytial Viruses/pathogenicity , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Viral Proteins/chemistry , Virus Diseases/virology , Viruses/metabolism , Viruses/pathogenicity
2.
Med Sci Monit ; 27: e935075, 2021 Dec 31.
Article in English | MEDLINE | ID: covidwho-1592562

ABSTRACT

BACKGROUND Thyroiditis is an important extrahepatic association in chronic hepatitis C virus (HCV) infection. There have been reports of an association between SARS-CoV-2 infection and the onset or re-activation of autoimmune hypothyroidism. Therefore, we performed this prospective observational study of 42 patients with COVID-19 infection and a history of hepatitis C virus infection and thyroid disease with follow-up thyroid function and autoantibody testing. MATERIAL AND METHODS From April 2020 to October 2020, we performed a prospective observational study of patients with cured hepatitis C virus (HCV) infection and documented thyroid disease who became infected with SARS-CoV-2 (confirmed by SARS-CoV-2 RNA detection via reverse-transcription polymerase chain reaction [RT-PCT] from the upper respiratory tract, both nasal and pharyngeal swabs). Evaluation at 1 and 3 months after SARS-CoV-2 infection included serum determination of antithyroid antibodies (anti-thyroglobulin [anti-Tg] and antithyroid peroxidase [ATPO]), thyroid-stimulating hormone (TSH), free thyroxine (fT4), free triiodothyronine (fT3), and evaluation of thyroid medication, with dose adjustment if required. RESULTS One-month follow-up showed that both patients with autoimmune thyroiditis as well as patients without antibodies had increased ATPO levels. Also, levels of TSH, fT3, and fT4 were significantly decreased. At 3-month follow-up, levels of ATPO were decreased in all patient groups and the levels of thyroid hormones increased to normal values. CONCLUSIONS This study supports previous reports of an association between SARS-CoV-2 infection and thyroid dysfunction associated with thyroid autoantibodies. Thyroid function tests may be considered as part of the laboratory work-up in patients with COVID-19.


Subject(s)
COVID-19/complications , Hepatitis C/complications , Hypothyroidism/etiology , Adult , Aged , COVID-19/virology , Female , Follow-Up Studies , Hepacivirus/pathogenicity , Hepatitis C/virology , Humans , Hypothyroidism/physiopathology , Hypothyroidism/virology , Male , Middle Aged , Prospective Studies , RNA, Viral , Romania/epidemiology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Thyroid Diseases/physiopathology , Thyroid Function Tests , Thyroid Gland/physiology , Thyroiditis, Autoimmune/blood , Thyroiditis, Autoimmune/immunology , Thyrotropin/blood , Thyroxine/blood , Triiodothyronine/blood
4.
Rev Med Virol ; 31(6): e2228, 2021 11.
Article in English | MEDLINE | ID: covidwho-1126517

ABSTRACT

Chloroquine (CQ) and hydroxychloroquine (HCQ) have been used as antiviral agents for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection. We performed a systematic review to examine whether prior clinical studies that compared the effects of CQ and HCQ to a control for the treatment of non-SARS-CoV2 infection supported the use of these agents in the present SARS-CoV2 outbreak. PubMed, EMBASE, Scopus and Web of Science (PROSPERO CRD42020183429) were searched from inception through 2 April 2020 without language restrictions. Of 1766 retrieved reports, 18 studies met our inclusion criteria, including 17 prospective controlled studies and one retrospective study. CQ or HCQ were compared to control for the treatment of infectious mononucleosis (EBV, n = 4), warts (human papillomavirus, n = 2), chronic HIV infection (n = 6), acute chikungunya infection (n = 1), acute dengue virus infection (n = 2), chronic HCV (n = 2), and as preventive measures for influenza infection (n = 1). Survival was not evaluated in any study. For HIV, the virus that was most investigated, while two early studies suggested HCQ reduced viral levels, four subsequent ones did not, and in two of these CQ or HCQ increased viral levels and reduced CD4 counts. Overall, three studies concluded CQ or HCQ were effective; four concluded further research was needed to assess the treatments' effectiveness; and 11 concluded that treatment was ineffective or potentially harmful. Prior controlled clinical trials with CQ and HCQ for non-SARS-CoV2 viral infections do not support these agents' use for the SARS-CoV2 outbreak.


Subject(s)
Chikungunya Fever/drug therapy , Chloroquine/therapeutic use , HIV Infections/drug therapy , Hepatitis C, Chronic/drug therapy , Hydroxychloroquine/therapeutic use , Infectious Mononucleosis/drug therapy , Severe Dengue/drug therapy , Warts/drug therapy , Alphapapillomavirus/drug effects , Alphapapillomavirus/immunology , Alphapapillomavirus/pathogenicity , Antiviral Agents/therapeutic use , COVID-19/virology , Chikungunya Fever/immunology , Chikungunya Fever/pathology , Chikungunya Fever/virology , Chikungunya virus/drug effects , Chikungunya virus/immunology , Chikungunya virus/pathogenicity , Dengue Virus/drug effects , Dengue Virus/immunology , Dengue Virus/pathogenicity , HIV/drug effects , HIV/immunology , HIV/pathogenicity , HIV Infections/immunology , HIV Infections/pathology , HIV Infections/virology , Hepacivirus/drug effects , Hepacivirus/immunology , Hepacivirus/pathogenicity , Hepatitis C, Chronic/immunology , Hepatitis C, Chronic/pathology , Hepatitis C, Chronic/virology , Herpesvirus 4, Human/drug effects , Herpesvirus 4, Human/immunology , Herpesvirus 4, Human/pathogenicity , Humans , Infectious Mononucleosis/immunology , Infectious Mononucleosis/pathology , Infectious Mononucleosis/virology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Severe Dengue/immunology , Severe Dengue/pathology , Severe Dengue/virology , Treatment Outcome , Warts/immunology , Warts/pathology , Warts/virology , COVID-19 Drug Treatment
5.
Molecules ; 25(21)2020 Oct 22.
Article in English | MEDLINE | ID: covidwho-983187

ABSTRACT

Viral infections and associated diseases are responsible for a substantial number of mortality and public health problems around the world. Each year, infectious diseases kill 3.5 million people worldwide. The current pandemic caused by COVID-19 has become the greatest health hazard to people in their lifetime. There are many antiviral drugs and vaccines available against viruses, but they have many disadvantages, too. There are numerous side effects for conventional drugs, and active mutation also creates drug resistance against various viruses. This has led scientists to search herbs as a source for the discovery of more efficient new antivirals. According to the World Health Organization (WHO), 65% of the world population is in the practice of using plants and herbs as part of treatment modality. Additionally, plants have an advantage in drug discovery based on their long-term use by humans, and a reduced toxicity and abundance of bioactive compounds can be expected as a result. In this review, we have highlighted the important viruses, their drug targets, and their replication cycle. We provide in-depth and insightful information about the most favorable plant extracts and their derived phytochemicals against viral targets. Our major conclusion is that plant extracts and their isolated pure compounds are essential sources for the current viral infections and useful for future challenges.


Subject(s)
Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , HIV Infections/drug therapy , Hepatitis C, Chronic/drug therapy , Herpes Simplex/drug therapy , Influenza, Human/drug therapy , Phytochemicals/therapeutic use , Pneumonia, Viral/drug therapy , Antiviral Agents/chemistry , Antiviral Agents/classification , Antiviral Agents/isolation & purification , Betacoronavirus/drug effects , Betacoronavirus/pathogenicity , Betacoronavirus/physiology , COVID-19 , Coronavirus Infections/pathology , Coronavirus Infections/virology , Drug Discovery , HIV/drug effects , HIV/pathogenicity , HIV/physiology , HIV Infections/pathology , HIV Infections/virology , Hepacivirus/drug effects , Hepacivirus/pathogenicity , Hepacivirus/physiology , Hepatitis C, Chronic/pathology , Hepatitis C, Chronic/virology , Herpes Simplex/pathology , Herpes Simplex/virology , Humans , Influenza, Human/pathology , Influenza, Human/virology , Orthomyxoviridae/drug effects , Orthomyxoviridae/pathogenicity , Orthomyxoviridae/physiology , Pandemics , Phytochemicals/chemistry , Phytochemicals/classification , Phytochemicals/isolation & purification , Plants, Medicinal , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , SARS-CoV-2 , Simplexvirus/drug effects , Simplexvirus/pathogenicity , Simplexvirus/physiology , Virus Internalization/drug effects , Virus Replication/drug effects
6.
Channels (Austin) ; 14(1): 403-412, 2020 12.
Article in English | MEDLINE | ID: covidwho-889445

ABSTRACT

The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has prompted an urgent need to identify effective medicines for the prevention and treatment of the disease. A comparative analysis between SARS-CoV-2 and Hepatitis C Virus (HCV) can expand the available knowledge regarding the virology and potential drug targets against these viruses. Interestingly, comparing HCV with SARS-CoV-2 reveals major similarities between them, ranging from the ion channels that are utilized, to the symptoms that are exhibited by patients. Via this comparative analysis, and from what is known about HCV, the most promising treatments for COVID-19 can focus on the reduction of viral load, treatment of pulmonary system damages, and reduction of inflammation. In particular, the drugs that show most potential in this regard include ritonavir, a combination of peg-IFN, and lumacaftor-ivacaftor. This review anaylses SARS-CoV-2 from the perspective of the role of ion homeostasis and channels in viral pathomechanism. We also highlight other novel treatment approaches that can be used for both treatment and prevention of COVID-19. The relevance of this review is to offer high-quality evidence that can be used as the basis for the identification of potential solutions to the COVID-19 pandemic.


Subject(s)
Betacoronavirus/metabolism , Coronavirus Infections/metabolism , Hepacivirus/metabolism , Ion Channels/metabolism , Pneumonia, Viral/metabolism , Animals , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/pathology , Coronavirus Infections/virology , Hepacivirus/pathogenicity , Hepatitis C/metabolism , Hepatitis C/virology , Humans , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL